Boskalis creates new horizons, executing an extensive range of dredging and marine projects in 90 countries and across six continents. With a wide range of skills in numerous specialities, our experts work around the world, always adhering to the strictest safety standards. View a selection of some of our most ground-breaking projects. Filter your selection based on the relevant market (Offshore Energy, Ports or Infrastructure) or activity (Offshore Energy, Dredging & Inland Infra or Salvage). Narrow your search further by time and location.

Project overview

Project

Çanakkale 1915 bridge

The 1915 Çanakkale Bridge, also known as the Çanakkale Strait Bridge, is a proposed suspension bridge being constructed in the Çanakkale area in Turkey. Situated just south of the towns of Lapseki in Asia and Sütlüce Village in Europe. The bridge will span the Dardanelles strait, about 10 km south of the Sea of Marmara. The bridge is the centerpiece of the 324 km long Kınalı-Balıkesir Motorway, which will connect the O-3 and O-7 motorways in East Thrace to the O-5 motorway in Anatolia. With a main span of 2,023 m, the bridge will become the longest suspension bridge in the world. The total length of the bridge will be 3,563 m and together the approach viaducts the length reaches 4,608 m. The total height of the bridge’s two towers will be 318 m tall. The deck of the bridge will be at 72.8 m hight and have a total width of 45.06 m and a maximum thickness of 3.5 m. The deck will carry six lanes (three in each direction) of motorway, together with two walkways on each side for maintenance. On January 26, 2017, a consortium SK Engineering & Construction Co., Daelim Industrial Co., Limak Insaat Sanayi ve Ticaret AS and Yapi Merkezi Insaat Sanayi ve Ticaret AS was appointed as contractor for the construction of the bridge. On March 18, 2017, the groundbreaking ceremony was held, marking the commencement of the construction works. Construction activities are underway and scheduled to be completed by March 2022. Boskalis Offshore Marine Services was contracted to execute a part of the lifting operations ,a float-over scope to install the tie-beam and deliver a part of the vessels for transport and installation of the foundation caissons.

Bekijk project
Project

Borssele ALPHA/BETA

Royal Boskalis Westminster is a leading global marine contractor and services provider. With safety as our core value, we offer a wide variety of specialist activities to the oil & gas and renewa-bles sectors. These activities include marine instal-lation and decommissioning, seabed intervention, marine transport and services, subsea services and marine survey. In addition, Boskalis is a global dredging contractor, provides towage and terminal services across the globe and delivers marine salvage solutions. By understanding what drives our clients we are able to provide the solutions that enable them to meet their specific business goals. For this reason we are constantly looking for new ways to broaden and optimize our offering and are committed to expanding our proposition, supported by our financial strength. With our committed professionals in engineering, project management and operations, 800 special-ized vessels and an unprecedented breadth of activities in 90 countries across six continents we help our clients in the offshore industry push boundaries and create new horizons. LONG-TERM DRIVERS APPLICABLE TO THE PROJECT Generating renewable energy. Increasing energy consumption. PROJECT CONTEXT In the Agreement for Sustainable Growth from the Dutch government, it has been agreed that in 2023, 16 percent of the Dutch energy-supply needs to come from sustainable sources. To achieve this goal, the Netherlands need to generate more wind-energy, both on land and sea. INTRODUCTION The grid connection of the Borssele offshore wind area in the North Sea consists of two 700 MW connections, called Alpha (for Borssele I and II) and Beta (for Borssele III and IV). Boskalis Subsea Cables, in consortium with NKT, was awarded the contract for the supply and installation of 4 export cables and 1 intercon-nector cable. In order to execute the project in a safe and efficient manner, Boskalis has taken full advantage of the expertise and capabilities within the group. To allow the cables to be installed, shallow parts of the route are dredged and sand-waves are pre-sweeped. BSS-III For the project, cable burial up to 10 meters depth was required. To achieve this, a trench of 2 meters was dredged. Then the Boskalis inhouse designed burial sledge BSS-3 lowered the cable another 8.5 meter. The BSS-III is capable to bury the cables up to 8.5 m in sand and 6.5 m in hard clay. A world record for cable burial. Using the tool, Boskalis managed to limit the amount of dredging in the NATURA2000 area Westerschelde and therefore minimizing the impact on the unique environment of this nature protection area.

Bekijk project
Project

Shell Gumusut Kakap

Gumusut Kakap is a deepwater oil discovery in offshore Sabah, Malaysia where Sabah Shell Petroleum Company is the designated Operator. This development employs Malaysia’s first deepwater semi-submersible production system. The 44,000 t FPS is to be located about 200 km off the shore of Sabah (East Malaysia) in the South China Sea in water depth about 1,200 m. The project has allowed Shell to share deep-water expertise with Malaysian energy companies, assisting in the Malaysian government’s goal to create an offshore industry hub. The platform was built in Malaysia by Malaysian Marine and Heavy Engineering Sdn Bhd (MMHE). Boskalis was awarded a contract by MMHE for the provision of the Heavy Transport Vessel (HTV) for the load-out, float-off and tow-back package of the Project which includes the load-out of the Integrated FPS from MMHE fabrication Yard onto the HTV, Dry-transport to Desaru, Float-off, Tow-back and Re-delivery at MMHE fabrication yard. Boskalis was responsible for the load-out-, transport- and float-off engineering and execution of the Gumust Kakap FPS. This included the design of HTV grillages, skid beams and seafastening as well as the design, fabrication and delivery of a ground reaction type Buoyance Tank(BT). The scope also included the mobilization and readiness of HTV Blue Marlin, HTV ballasting during the skidded load-out operation and the provision of the marine spread required for the float-off operation and HTV and BT demobilization. HTV Blue Marlin arrived at the load-out yard end of March 2013. The fabrication yard started with the installation of the grillage required for the load-out of the FPS. The outfitting of the HTV main deck was completed mid-April. Since the draft of the FPS, once afloat, would be more than the maximum water depth over the HTV main deck, a draft reduction mechanism had to be designed. For this purpose Boskalis had designed and fabricated a Buoyance Tank (BT). This BT was designed to fit between the FPS bottom plating and the top of the HTV grillage. On the BT fabrication yard the BT was loaded onto a charted barge, transported to Pasir Gudang, where it was loaded-in for storage until the FPS was ready for the load-out. On April 16th 2013 the BT was load-out by SPMT’s onto the barge that would be used for positioning the BT between FPS bottom and HTV grillage. On May 3rd the FPS was skidded to just before the HTV (land-pull) to start the load-out the next day. As a result of the skidding system used, the tolerances were very small, which resulted in a slow skidding speed. The FPS was in its final position in the early morning of May 5th. Once in position the securing of the FPS started, the link beams were removed and the HTV de-ballasted to BT load-out conditions. On May 9th the barge with BT were moored against the HTV. The next day the load-out of the BT started and on May 11th the BT was in the correct position. HTV and BT were now prepared and tested for the dry-tow and the subsequent discharge operations. On May 14th the loaded HTV shifted from Pasir Gudang to the offload location near Desaru where it dropped anchor. Various preparatory work on the FPS and seafastening removal had to be done and on May 21st all was ready for the discharge of the FPS with the BT under it. The FPS and BT were towed off the HTV by 1 AHT and 4 inshore tugs. After this discharge the HTV de-ballasted and shifted back to the yard for main deck reinstatement. The FPS needed to be offloaded from the BT which started early morning of May 22nd by ballasting of the BT. The FPS was towed off the BT that same afternoon and re-delivered to client. The BT was de-ballasted and towed back to Pasir Gudang for reinstatement. To ensure that the FPS could achieve the required float-off draft, the BT, which is technically a ground reaction barge is required for the discharge operation. Boskalis was responsible for ensuring that the BT was designed, constructed and delivered to ensure the safe and successful execution of this complex discharge. The BT design was unique, having its own power, sophisticated ballast system, tank gauging system, ballast air compressors, hydraulics etc. which had to be thoroughly examined and dry tested before the operation. Also, ground reaction barge operations require flat hard seabed. Intensive research was carried out including bottom survey of several areas around the coast before suitable location with hard sand at required depths was found off Desaru area. The success of the project was due to the strong cooperation between all parties. The project had schedule challenges but the close working relationship between the project management teams of MMHE and Boskalis ensured that the project was still executed in a safe, operationally sound and timely manner.

Bekijk project
Project

Lyttelton port - Channel deepening

Lyttelton Port is the third largest deep-water port and the largest port on the South Island of New Zealand and provides a vital link to international trade routes and a key role in the global transport network. As a result of the Canterbury earthquakes in 2010 and 2011 the port sustained significant and widespread damage to infrastructure impacting service demands in relation to throughput, productivity and customer services. This was the driving force behind a large scale redevelopment program of Lyttelton Port of which a key part was creating a new deep-draught capable container terminal. Lyttelton Port Company Ltd (LPC) contracted Boskalis to execute the dredging works for Stage 1 of the Channel Deepening Project. The works included the widening, deepening and extension of the existing channel and swing basin. The channel was widened from 180 to 200 m, deepened and lengthened by approximately 2 m and 2.5 km respectively. Dredging works were undertaken by the TSHD Fairway assisted by a plough vessel for a period of approximately three months. The dredged material was disposed of at a designated disposal ground, located approximately 5 nautical miles offshore. A total volume of 5 million m3 nett was dredged which comprised mainly of a clayey silt material. Due to the high ecological and cultural value of the area, strict environmental requirements applied. Environment and adaptive management system Prior to Contract award Boskalis was involved in preparation works, working collaboratively with LPC and their experts to establish various environmental management plans required under the Consent. This ensured the management plans were protective of the environment, incorporated stakeholders concerns and could be executed in a practical manner by Boskalis. These plans included: turbidity, biosecurity and marine mammal management. The environmental monitoring program, implemented by LPC, was the largest ever undertaken in New Zealand and consisted of a baseline period of 12 months prior to commencement of dredging. During the works a system of 14 monitoring buoys measured turbidity continuously and were displayed in real-time on a web-based interface. Together with real-time met-ocean, current and wind measurements the monitoring system allowed a good understanding of the environmental system and facilitated adaptability of the dredge works if required. Through this process, turbidity levels remained below the threshold values during the works resulting in full compliance with the Resource Consent. Stakeholders Stakeholders played a large part in the project. Technical advisory groups were established consisting of scientific advisors, Iwi representatives, commercial fisheries and aquaculture representatives. These were involved in the design phase as well as during the delivery of the project. Boskalis attended meetings with these groups including attendance at the local marae (Iwi meeting ground) and the Fairway crew were formally welcomed by Te Hapū o Ngāti Wheke with a ceremony on board. Furthermore, the regulator Environment Canterbury was involved early on in the project and a good relationship was built throughout the project through open communication. During the project, several stakeholder groups visited the Fairway, helping in a better understanding of how the dredge operations were managed. Team-work During the works excellent team-work, open communication and a result driven team-spirit between the Fairway crew, the project team and LPC, ensured environmental thresholds were met through adaptive management and the project was completed successfully, on time and within budget. Safety As the Fairway had to work in close proximity to operational berths, regular SIMOPS (simultaneous operations) meetings were held with stakeholders to ensure safety during dredging operations. Successful completion The Lyttelton Channel Deepening Project represented New Zealands largest dredging project to date. In total 5 million m3 nett was dredged by Boskalis using TSHD Fairway in compliance with stringent environmental requirements through excellent team work and in the spirit of collaboration with LPC.

Bekijk project
Project

Cieg GJ1 Cable repair

Channel Islands Electricity Grid, a joint venture between Jersey Electricity and Guernsey Electricity operate several interconnecting power cable systems (power and telecom) between Jersey, Guernsey and France. Both Jersey and Guernsey rely upon the services of these interconnecting power cables and as a consequence there is a demand to reduce the possible effects and impact of failure to these interconnecting power cables. Boskalis were contracted to conduct a preemptive repair replacing a section of cable including the installation two subsea joints on the Guernsey Jersey circuit, close to Havelet bay. SCOPE OF WORK Mobilisation of cable repair vessel and auxiliary equipment Mobilise cable storage pan and turntable onto transpooling barge Load spare cable from the storage pan onto the Ndurance Determine cable cut position along cable route Cut, test and seal operations Removal of sea end cable till jointing location Cut cable and joint to new cable section Lay down joint No.1 on sea bottom and lay new section of cable Recover shore end and joint both cable ends Lay down joint No.2 and omega on sea bottom Post lay ROV survey Having signed a Power Cable Maintenance Agreement (PCMA) in the summer of 2012, Boskalis maintains a long standing relationship with Channel Islands Electricity Grid (CIEG). The parties involved in the agreement have worked together to achieve a quick response method for maintaining and where necessary repairing the subsea assets that are so vital for the islands communities. In November 2014 Boskalis was instructed to mobilise for a preemptive repair after CIEG had detected a potential vulnerability in the subsea cable, which provides a power link to the Island. Extensive and detailed engineering was carried out over the Christmas and New Year period, owing to the very difficult repair area. The large tide range and strong, unpredictable currents around the shallow rocky outcrops of Havelet Bay created a number challenges during the engineering phase. Being a winter repair in the English Channel the planning for the project was critical. Mobilisation of the CLV “Ndurance” started on the 12th January with the cable being loaded from the Boskalis storage only 5 days later. The vessel arrived in Havelet bay, Guernsey on the 21st January to start the repair operations after 48 hours of DP familiarisation along the challenging route. The repair operation was broken into sections to ensure that each operation could be complete once it had been committed to. The repair was completed on schedule and to the satisfaction of all parties on the 5th February 2015. Guernsey Electricity issued a statement which commended the professionalism and efficiency of Boskalis throughout what was a challenging repair in a difficult period.

Bekijk project
Project

DanTysk OWF

The DanTysk offshore wind farm was being built by Vattenfall and Stadtwerke München and is located west of the island of Sylt, on the German-Danish border. With 80 wind turbines in total, DanTysk provides up to 400,000 homes with green energy. Although cable activities in the German North Sea started in July 2013, it wasn’t until February 2014 that Boskalis was called in to complete termination work on the 35 cables already installed. Despite the extremely short preparation time, it proved possible to commence work within 20 days with the Boskalis Offshore DP3 vessel, Protea. At the same time, the Stemat 87 set sail to Velsen and Tonsberg to load the cable. She continued her journey to Esbjerg, where was loaded onto the installation vessel, Olympic Taurus. The installation and termination work for the remaining 53 cables was resumed in April 2014.

Bekijk project
Back to top