To main content

IJsseldelta

The IJsseldelta project is part of the national Room for the River program, which comprises over 30 measures aimed at upgrading the flood defenses in the Dutch river areas. The project involves lowering the summer bed of the Lower IJssel river along a length of 7.5 kilometers near the town of Kampen and creating a bypass to the south of Kampen.

Isala Delta

Boskalis Nederland is executing the work in conjunction with Van Hattum and Blankevoort in the Isala Delta building consortium, which was awarded the Design & Construct contract by the Dutch Department of Public Works and the province of Overijssel. In addition to normal procedures the tendering process involved so-called competition-oriented dialogue. This special procedure involves conducting dialogue beforehand with the prospective contractors, giving Isala Delta a better understanding of what the clients wanted and giving the commissioning bodies a better idea of both the potential solution options and the project risks.

Work

The project consists of two measures to guarantee the future protection of the Kampen-Zwolle region against flooding: firstly the lowering of the summer bed of the Lower IJssel, involving the deepening of the river along a length of 7.5 kilometers between the Molenbrug and Eilandbrug bridges, and secondly the realization of the Reevediep, a new side branch of the River IJssel to the south of Kampen, towards the Drontermeer lake. This will also enhance the rural planning quality of the surrounding area. The natural flood protection in three flood plains will be reinforced. Over 300 hectares of new delta nature area will be realized in the Reevediep, including new walking and hiking paths and cycle tracks, and we are also creating a special channel for pleasure craft. As part of the Reevediep project Isala Delta will also realize an intake pipeline, a lock for pleasure craft, a bridge and two turning locks.

Planning schedule

Initial preparations started in the fall of 2014. Dredging work will commence in mid-2015, with the project becoming increasingly visible from then on. Under the current schedule the project to lower the summer bed will be completed by the end of 2016. We expect to deliver the entire project (stage 1) by the end of 2019.

Related projects

Selected filters
IMG_0064_header.jpg

Port development, Gothenburg

Gothenburg turns around some 34 million tons of cargo annually, including 700,000 TEU (containers), and is unique in the region. With regard to the variety and frequency of calls from intercontinental liner trade the port is outstanding in Sweden. The port can be reached from the sea via two different channels: Torshamnen Fairway and Böttö Fairway. From a navigational point of view both channels needed to be deepened and widened at a number of places. Thus there were two good reasons to enhance the fairways: securing the port’s future as the premier port for liner trade and creating safer navigation. This resulted into a major dredging contract which was awarded in June 2002 to Boskalis Westminster Dredging Company.

03_header.jpg

Remediation, Urk harbor area

Many port areas requiring dredging works have been forced to put projects on hold due to the absence of an environmentally safe solution for the disposal or processing of contaminated sediments. While this is a global problem, the availability of central, large-scale repositories in the Netherlands has transformed disposal economics at the national level. Nevertheless, the high level of debris encountered during the dredging of ports and harbors remains a major challenge to all contractors. The hydraulic transport of sediments with a high debris content is impossible.

Pusan_New_Port_5_header.jpg

Port construction, Pusan

The 4th largest container terminal in the world is located in the South East of the South Korean peninsula at Busan. As the old port is completely surrounded by the metro-city, expansion of the old port is restricted. To solve the chronic phenomenon of cargo congestion MOMAF (Ministry of Marine and Fisheries) decided in 1997 to construct a new port situated 20 km west of Busan with a final total handling capacity of 4.6 million TEU and total expenses of 4.2 billion USD.

mejillones_5_header.jpg

Port construction and environmental monitoring, Mejillones

Boskalis International B.V. was working as a subcontractor to the Chilean civil contractor Empresa Constructora BELFI SA, which was awarded the contract to construct phase 1 of the New Mega Port Mejillones. This port has been developed in order to ship the copper of the Chilean mining corporation CODELCO.

Luchtfoto_milieubrochure_header.jpg

Cleanup, Ketelmeer

Ketelmeer, a lake in the Netherlands with a length of some 10 kilometers and a width varying from two to three kilometers, separates the North Eastern and Southern Polders constructed during the late 1960s and early 1970s. It is a major example of the problem of 'historic pollution'. Lake Ketelmeer receives the waters of the Rijn and IJssel and over a period of three or more decades, tens of millions of cubic meters of highly contaminated sediments entered Ketelmeer from hundreds of upstream locations. The bottom was covered by polluted sediments to an average depth of 50 cm. A significant proportion of this material had to be removed, or capped by the cleaner sediments of recent years, if a normal aquatic environment was to be restored.

Warnow_Tunnel__3__header.jpg

Tunnel construction Warnow, Rostock

The Warnow Tunnel is located in Rostock, Germany, at the old mouth of the river Warnow in the Baltic Sea. In the DDR period this area grew out to be the main harbor of East-Germany. After the 'turn' (die Wende) in 1989 the port more or less died. Goods came cheaper and quicker from Rotterdam, Bremen and Hamburg by rail.