To main content

Creation bird island, Le Havre port 2000

Le Havre is the fifth largest container port in Europe and is expanding its facilities: the current 14 quays for container vessels are to be expanded with another 12 (all outside the locks). Port 2000’s rationale centres on Le Havre’s determination to position itself as a leading hub.

The Cutter Suction Dredgers Haarlem and Cyrus were deployed to execute the works. The Haarlem first dredged the top layer (mainly sand). The Cyrus took over for the rougher gravel part. Cyrus began by dredging for the new berths. The dredging required for Berths 1 and 2 was completed in July. The big cutter dredger then switched to the eastern port area and dredged Berths 3 and 4. Work then continued on dredging the turning basin. The berths were being dredged to -15.5 m. and the turning basin to -16.0 m. The dredged material was pumped into three reclamation areas, with a pumping distance varying between 2 km for the gravel and 4.5 km for the sand.

Creation of a bird island

Part of the environmental compensation measures for the Port 2000 project was the creation of  'Ilot Reposoir', an island that will serve as a bird habitat. Ilot Reposoir was constructed south of the Le Havre port extension, on a sandbank called 'Banc du Ratier' which is situated on the opposite side of the river Seine and the access channel to the ports of Honfleur and Rouen. The island has a complex geometry, but in general it can be described as an oval with an opening in the southern side. In size it measures 200 m from the north to the south and 325 m from the east to the west. Various requirements were imposed on the design. For example, the estuary currents should not be affected, the island had to be strong enough to withstand storms, and in particular the island had to meet the needs of its bird populations, especially those of the tern, which is an endangered species. The first phase of the project consisted of constructing a dike of armourstone along the future outline of the island with the Arca. The island was reclaimed with dredged material (sand and gravel) from the approach channel to Le Havre port.

Related projects

Selected filters
IMG_0064_header.jpg

Port development, Gothenburg

Gothenburg turns around some 34 million tons of cargo annually, including 700,000 TEU (containers), and is unique in the region. With regard to the variety and frequency of calls from intercontinental liner trade the port is outstanding in Sweden. The port can be reached from the sea via two different channels: Torshamnen Fairway and Böttö Fairway. From a navigational point of view both channels needed to be deepened and widened at a number of places. Thus there were two good reasons to enhance the fairways: securing the port’s future as the premier port for liner trade and creating safer navigation. This resulted into a major dredging contract which was awarded in June 2002 to Boskalis Westminster Dredging Company.

03_header.jpg

Remediation, Urk harbor area

Many port areas requiring dredging works have been forced to put projects on hold due to the absence of an environmentally safe solution for the disposal or processing of contaminated sediments. While this is a global problem, the availability of central, large-scale repositories in the Netherlands has transformed disposal economics at the national level. Nevertheless, the high level of debris encountered during the dredging of ports and harbors remains a major challenge to all contractors. The hydraulic transport of sediments with a high debris content is impossible.

Pusan_New_Port_5_header.jpg

Port construction, Pusan

The 4th largest container terminal in the world is located in the South East of the South Korean peninsula at Busan. As the old port is completely surrounded by the metro-city, expansion of the old port is restricted. To solve the chronic phenomenon of cargo congestion MOMAF (Ministry of Marine and Fisheries) decided in 1997 to construct a new port situated 20 km west of Busan with a final total handling capacity of 4.6 million TEU and total expenses of 4.2 billion USD.

mejillones_5_header.jpg

Port construction and environmental monitoring, Mejillones

Boskalis International B.V. was working as a subcontractor to the Chilean civil contractor Empresa Constructora BELFI SA, which was awarded the contract to construct phase 1 of the New Mega Port Mejillones. This port has been developed in order to ship the copper of the Chilean mining corporation CODELCO.

Luchtfoto_milieubrochure_header.jpg

Cleanup, Ketelmeer

Ketelmeer, a lake in the Netherlands with a length of some 10 kilometers and a width varying from two to three kilometers, separates the North Eastern and Southern Polders constructed during the late 1960s and early 1970s. It is a major example of the problem of 'historic pollution'. Lake Ketelmeer receives the waters of the Rijn and IJssel and over a period of three or more decades, tens of millions of cubic meters of highly contaminated sediments entered Ketelmeer from hundreds of upstream locations. The bottom was covered by polluted sediments to an average depth of 50 cm. A significant proportion of this material had to be removed, or capped by the cleaner sediments of recent years, if a normal aquatic environment was to be restored.

Warnow_Tunnel__3__header.jpg

Tunnel construction Warnow, Rostock

The Warnow Tunnel is located in Rostock, Germany, at the old mouth of the river Warnow in the Baltic Sea. In the DDR period this area grew out to be the main harbor of East-Germany. After the 'turn' (die Wende) in 1989 the port more or less died. Goods came cheaper and quicker from Rotterdam, Bremen and Hamburg by rail.