To main content

Dredging of sediments, Miami river

The Miami River, which flows through an urban industrial area of Miami, Florida, had not been dredged since the area was built in 1934. In 1990 the US Army Corps of Engineers advised the city that the sediment had to be removed from the river as it was impeding shipping. There was one caveat however: the sediment, contaminated with heavy metals, pesticides and oil, could not be placed in the ocean.

In 2004 a consortium of Weston Solutions and Bean Environmental was awarded the job of restoring the river to its original depth. The two companies were jointly responsible for the dredging, transportation and processing of around 540,000 m3 of contaminated sediment. Boskalis Dolman was consulted on the project at an early stage and was subsequently commissioned as subcontractor to Bean Environmental to erect a transshipment and processing plant for the dredged sediments. A Mobile Soil Washing Plant (MSWP) was flown in and assembled on the banks of the Miami River. This MSWP combines coarse fraction separation and mechanical dewatering. Coarse fraction separation involves the precise separation of the various sub-flows using a rotating wash and sieve drum, shaker screens and hydrocyclones. Mechanical dewatering is used to process the remainder of the contaminated sludge. As a result of this processing by the MSWP, a large proportion of the resulting sub-flows could be beneficially used in the community at little extra cost to the project. In addition, we were able to significantly reduce the original volume of contaminated dredged sediments, which had a direct effect on cost-efficiency.

Related projects

Selected filters
DSC04359_header.jpg

Port access channel dredging, Walvis Bay

The port of Walvis Bay is a naturally sheltered deepwater harbor on the west coast of Africa. The port is part of a transit route linking Southern Africa, Europe and the Americas and it is Namibia’s largest commercial port, handling around 5 million tons of cargo each year. The container terminal can accommodate a throughput of about 250,000 containers per year.

IMG_8772_header.jpg

Coastal protection, St. Petersburg

St. Petersburg is a UNESCO World Heritage City, but its location along the River Neva means that it has been threatened by over 300 floods since its founding by Peter the Great in 1703. The completion of the new 25 km long storm-surge barrier across the Gulf of Finland ensures that the city will no longer be vulnerable to high tides and devastating floods. As a result of the new Flood Protection Barrier, however, the old winding access channel had to be replaced with a new, straighter, more easily navigable channel.

Delflandse_coast___3__header.jpg

Coastal protection, Delfland coast

In August 2008 Van Oord and Royal Boskalis Westminster N.V. have been awarded a contract by the Dutch Directorate General for Public Works and Water Management to reinforce a weak link in the Delflandse coast . The contract is worth EUR 120 million of which Van Oord and Boskalis have an equal share.

IMG_1888_header.jpg

Cleanup, Zellingwijk area

The Zellingwijk quarter of the village of Gouderak was built in the middle of the last century. In the early 1980s it became clear that the soil underneath this residential area was heavily contaminated as a result of the dumping of waste - mainly mineral oils and pesticides. The homes built on the site were subsequently demolished in the mid-1980s. Pending definitive remediation work, a layer of concrete / asphalt was applied to seal the site.

DSCF0279_header.jpg

Overview activities, Bahrain

The Kingdom of Bahrain is an island located in the Gulf, east of Saudi Arabia and north of Qatar and connected with its neighbour Saudi Arabia since the year 1980 with a 25 km long causeway. The archipelago consists of some 30 islands with a total of 160 km of shoreline and has a population of 800,000. Whereas the surface of Bahrain in the year 1960 was around 650 km2, the last decennia have seen a steady increase in the surface till a respectable figure of 740 km2 in 2007. This increase has been achieved by a various number of small and mayor reclamation projects.

37ac96e429c252fd55f1136ce6374c9e_image_header.jpg

Early works for LNG plant, Brass Island

The Brass LNG Project’s objective is to construct a LNG Complex on Brass Island, Bayelsa State, Nigeria, and in so doing, develop Nigeria’s abundant gas resources, reduce the adverse effect of gas flaring on the environment, and provide social-economic benefits to the local and wider Nigerian communities. The LNG complex will be designed to produce approximately 10 million tons per annum (MTPA) of LNG, as well as LPG and Residual NGL products.