To main content

Shore approach and landfall works, Libyan gas transmission system

West Libya aimed to enhance its position in the supply of continental Europe's energy needs. As the demand for cleaner energy was rising and gas consumption in Italy wasexpected to increase, Libya and Italy found common ground for cooperation. Construction of a 700 million USD gas treatment plant in Mellitah was the centrepiece of this West Libya gas project. The Mellitah plant is supplied with gas from the desert Wafa field, 520 kilometers south-west of Tripoli, and from the offshore Bahr Essalam field, 110 kilometers north of Tripoli.

The Libyan Gas Transmission Project, also called the Green Stream project, comprised the installation of a 32" gas pipeline across the Mediterranean Sea, approximately 516 kilometers long, from Mellitah landfall to Gela landfall at Sicily, Italy. The client was Green Stream, a joint venture between Agip Gas and the Libyan National Oil Company; the main contractor was Saipem S.p.A., who were also contracted for the installation of the offshore twin pipeline from Bahr Essalam gas field to the Mellitah plant. Boskalis Offshore B.V., in joint venture with Tideway B.V., executed the shore approach and landfall works. These included trench excavation (onshore and offshore), installation of pull arrangements, assistance during pipe pull and backfill (rock and sand) of the trenches.

Related projects

Selected filters

Installation gas pipeline, Balgzand-Bacton

BBL Company was established to design, construct, operate and exploit the Balgzand-Bacton Pipeline (BBL) for the transmission of natural gas from Balgzand, the Netherlands to Bacton in the United Kingdom. The overall length of the 36" offshore pipeline is some 230 kilometers. The capacity is around 42 million m3 of gas a day. As part of the pipeline installation, Saipem UK Ltd awarded Boskalis Offshore the contracts for the shore approaches at Julianadorp, the Netherlands and Bacton in the United Kingdom and the presweeping and rock dumping works along the pipeline route on the North Sea.

Rock_installation_near_wellhead_tower.jpg

Platform installation,
De Ruyter field

The De Ruyter field, discovered in 1996, straddles Blocks P10a and P11b in the North Sea, which are both operated by Petro-Canada. The development consists of a Gravity Base Structure (GBS) with wellhead and lattice towers supporting an Integrated Production Deck (IPD). De Ruyter joins Hanze as Petro-Canada’s second operated offshore field in the Dutch North Sea. Heerema Zwijndrecht was awarded the fabrication, installation and hook-up of the GBS and IPD. The transportation, installation and stabilisation of the GBS was subcontracted to a consortium between Smit Marine Projects and Boskalis Offshore.

HL_Stralsund_header.jpg

Bridge construction, Stralsund

SMIT’s 1,200 tonnes sheerlegs Taklift 7 completed a major German bridge building programme during 2006. The sheerlegs had spent several months at the new Stralsund Bridge, on the German Baltic coast. This suspension bridge links the mainland with the island of Rügen.

Nearshore_excavation_header.jpg

Pipeline construction, Mumbai Highfields to Uran Trunkline

The Mumbai High Fields to Uran Trunkline Project is situated near Mumbai (Bombay) in India. ONGC Ltd (Oil & Natural Gas Corporation) has constructed two new pipeline connections from the Mumbai High Fields to Uran over a total length of 204 kilometers. These new pipelines have been constructed in order to replace the existing Bombay High Fields to Uran Trunkline, which had already completed more than 25 years of successful operation and had surpassed its design life. The new pipelines are a 30" oil pipeline and a 28" gas pipeline.

Backhoe_dredger_Cornelius_trench_dredging_header.jpg

Construction gas pipeline
Beachfield Upstream
Development

The BUD project entailed the construction of a 66 kilometer, 36" gas pipeline, 63 kilometers offshore and 3 kilometers onshore underground to the treatment facilities. The offshore pipeline runs from the east coast at Beachfield (Rustville), Guayaguayare, to the 'Cassia B' platform complex. At the NGC Abyssinia facilities, 3 kilometers off Beachfield, a new sludge catcher has been developed to separate the liquid or condensate from the natural gas. The condensate is separated from water and metered. The station is also designed to control the pressure of gas, as it enters into the land gas transmission system. NGC's existing 30" and 24" gas pipelines have also been diverted to the new Abyssinia sludge catcher.

IMG_2683_header.jpg

Seabed preparations, Changi Outfall

The Public Utilities Board implemented the Deep Tunnel Sewerage System as a long-term solution to meet the needs for sewerage water collection, treatment and disposal to help maintain Singapore’s clean and healthy environment. In phase one of the Deep Tunnel Sewerage System, the Changi Water Reclamation Plant was constructed in the east of Singapore, from which the Changi Outfall was subsequently constructed. Treated effluent from the water treatment plant will flow through outfall pipelines and be discharged through series of diffusers, dispersing the effluent in the seawater. Boskalis International was awarded the contract for the Changi Outfall in 2002 and formed a joint venture with Archirodon to construct the project.