To main content

Outer harbor channel widening, Adelaide.

The Port of Adelaide is the primary port in South Australia, located at Outer Harbor. The port is operated by Flinders Ports Pty Ltd (Flinders Ports) and handles both container and cruise vessels, contributing significantly to the State’s economic activity. Flinders Ports identified the need for an upgrade of the existing infrastructure driven by the emergence of Post Panamax class vessels. To meet this growth the existing channel had to be widened to accommodate vessels with a maximum width of 49 m without operational restrictions. Flinders Ports contracted Boskalis to execute the dredging works.

SCOPE

Dredging works included the widening of the existing access channel by 40 m to a total width of 170 m and the swing basin from 505 to 560 m and to a depth of -14.2 m LAT. The dredged material was transported to a designated dredge material placement area, located approximately 30 km offshore in the Gulf of St. Vincent. Dredging works were undertaken by the TSHD Gateway and the BHD Magnor assisted by a plough vessel and barges. A total volume of 1.5 million m3 nett was dredged in approximately 3 months.

EARLY CONTRACTOR INVOLVEMENT

Boskalis was appointed as preferred contractor in October 2018 and assisted from this moment in time in obtaining the Dredge Licence together with Flinders Ports, engineering consultant Arup and environmental consultant BMT. The dredge licence was granted by the Environmental Protection Agency of South Australia (EPA) on the 12th of March 2019. Environmental management plans were written in close collaboration between all parties, ensuring commencement of dredging works in time.

ENVIRONMENT

Environmental protection was of utmost importance for the executing of the project. Seagrass meadows are present adjacent the access channel for which stringent turbidity limits applied and seagrass surveys were undertaken prior and post dredging works. The project was partly located in the Adelaide Dolphin Sanctuary, hosting several resident and transient dolphin species, for which marine mammal monitoring was undertaken by the dredge crew. Prior to the works, razorfish present at the seabed in the channel had to be removed to prevent the potential spread of the Pacific Oyster Mortality Syndrome to South Australia’s important oyster farming industry. Finally, the overseas and interstate dredge vessels obtained a thorough cleaning prior to arrival in South Australia to adhere to Australia’s biofouling guidelines in order to prevent the importation of invasive marine species.

STAKEHOLDERS

Stakeholder management was key to the project’s success. Flinders Ports conducted a large community engagement campaign, which resulted in no complains during the works. During the works, continuous engagement between the EPA, Boskalis and Flinders Ports occurred to remain informed.

ADAPTIVE MANAGEMENT

During the works, dredge activities had to be managed to remain within the set turbidity thresholds. This was done through The Adaptive Management System in close cooperation with the client and the Environmental Protection Agency. Real-time turbidity monitoring data and knowledge on the operations and the environment ensured effective measures could be taken. During the works however, four events occurred where the upper threshold was exceeded, exuberated by severe weather. The EPA acknowledged that poor weather conditions contributed to the high turbidity levels on occasion and allowed the dredge operation to continue without harming the environment.

TEAM-WORK

The spirit of cooperation and the open communication within in the project team, as well with the Client and relevant stakeholders was excellent. It's also worth mentioning that almost half the project team consisted of female colleagues working on board of dredgers, on hydrographic surveys, environmental issues, planning, logistics and the secretarial side.

SAFETY

To prevent incidents during mooring and unmooring, the BHD Magnor is equipped with a mooring actuator. The mooring actuator was developed to eliminate personnel risks and to optimize the dredging process. The system is a remotely constant tensioning mooring system, which eliminates the need to manually handle the mooring lines for the barges coming along side to be loaded.However no firm requirement, but as a result of increasing awareness for pollution, biodegradable hydraulic oil was used in all the hydraulic systems on the project.

HR

All vessels on the project were operated by a mix of expatriate professionals and Australian seafarers. Personnel was given project specific training to assure the best outcome for the project:

  • Mammal observation training

  • Heritage training

  • Environmental compliance training

  • Project and visitor inductions

Related projects

Selected filters
Newbiggin_header.jpg

Beach replenishment, Newbiggin Bay

Newbiggin by the Sea was once a seaside resort, with the residential area focused around the bay. The beach has severely eroded over the years. If the coastline would continue to recede, sea walls could begin to collapse, imperilling coastline properties. The falling beach levels and increased risk of seawall failure led to a strategy and proposal to import beach fill, along with construction of an offshore breakwater to retain material. Boskalis expanded the existing beach and protected it from erosion.

AA_hoofdfoto_header.jpg

Dredging, reclamation,
reconstruction and environmental
monitoring works, Vilufushi

The Republic of the Maldives consists of 1,190 small coral islands grouped into 26 atolls. Only 200 islands are inhabited. On 26 December 2004, a tsunami originating from Indonesian waters struck the Maldives. This natural disaster had major economic, social and environmental consequences. Of the 200 inhabited islands, 13 were totally destroyed and 56 suffered major damage, including the island of Vilufushi in Thaa Atoll. Houses and infrastructure were heavily damaged. All the surviving residents had to be evacuated to the neighboring island of Buruni to the west of Vilufushi. The government of the Maldives decided to reconstruct the entire island and to extend it considerably by landfilling the shallow reef. Boskalis International was appointed for this work.

_DSF0040_header.jpg

Removal of overburden for bauxite mine, Klaverblad

Surinam’s alumina exports accounted for 70% of the total export figures. Aluminum is produced from bauxite and so bauxite mining was one of the country's vital industries. Growing demand for metals in fast-growing economies led BHP Billiton Maatschappij to open up a fourth mine alongside the three bauxite mines they already operated in Surinam. The mine location on the banks of the River Surinam was covered by a thick layer of clay. Borehole information and surveys showed that an area of about 130 ha needed to be cleared of bush, followed by the removal of the top layer and dewatering to an average depth of 14 meters. Safety and the prevention of dredging-related turbidity in the river were areas requiring particular attention.

Beachway_2002_67_header.jpg

Maintenance, Martin Garcia channel

The Rio Parana is the principal fairway for transporting the massive exports of agricultural products from the fertile plains of Argentina, Bolivia and Paraguay. Ocean going vessels sail the Parana River to the loading terminals in the Rosario region, situated 300 km upstream from the Rio de La Plata estuary. Both the Rio Parana and the Rio Uruguay flow into the Rio de la Plata. The Rio de la Plata can be described as a shallow inland-sea with natural depths between 1 and 6 m. The mouth of the Rio Parana from the Ocean is approximately 250 km. The Rio de la Plata has a width of 40 km on the upstream side near Buenos Aires and about 200 km downstream at the level of Montevideo.

Picture2_header.jpg

Dredging, reclamation and dewatering works, Gas-to-Liquids facility Escravos

The Escravos Gas-to-Liquids facility (EGTL) converts natural gas feed into high quality, environmentally superior, liquid GTL fuel, naphtha, and LPG products. The facility feed is approximately 320 million SCFD of natural gas and the facility produces approximately 33,000 BPD of products. The EGTL facility will be built on the north bank of the Escravos River tidal outlet, in the Niger Delta about 2 kilometers north of its confluence with the Atlantic Ocean on the Bight of Benin, approximately 100 nautical miles south east of Lagos, and 37 nautical miles west of Warri, Nigeria.

2007-02-22_header.jpg

Land reclamation, Half Moon Bay Island Manama

‘Half Moon Bay’ island is situated in the Seef area of Manama in the Kingdom of Bahrain. The purpose of the island is to accommodate a future 5 Star Hotel development as well as several villas. Engineering Department Hydronamic was engaged to develop the design of the island and to provide advisory services to Boskalis Westminster Middle East. Through good co-operation between the design engineers of Hydronamic and the construction team of Boskalis Westminster Middle East innovative ideas were developed which could be integrated into the rock protection design resulting in the successful and efficient construction with significant cost savings to the project.