To main content

Outer harbor channel widening, Adelaide.

The Port of Adelaide is the primary port in South Australia, located at Outer Harbor. The port is operated by Flinders Ports Pty Ltd (Flinders Ports) and handles both container and cruise vessels, contributing significantly to the State’s economic activity. Flinders Ports identified the need for an upgrade of the existing infrastructure driven by the emergence of Post Panamax class vessels. To meet this growth the existing channel had to be widened to accommodate vessels with a maximum width of 49 m without operational restrictions. Flinders Ports contracted Boskalis to execute the dredging works.

SCOPE

Dredging works included the widening of the existing access channel by 40 m to a total width of 170 m and the swing basin from 505 to 560 m and to a depth of -14.2 m LAT. The dredged material was transported to a designated dredge material placement area, located approximately 30 km offshore in the Gulf of St. Vincent. Dredging works were undertaken by the TSHD Gateway and the BHD Magnor assisted by a plough vessel and barges. A total volume of 1.5 million m3 nett was dredged in approximately 3 months.

EARLY CONTRACTOR INVOLVEMENT

Boskalis was appointed as preferred contractor in October 2018 and assisted from this moment in time in obtaining the Dredge Licence together with Flinders Ports, engineering consultant Arup and environmental consultant BMT. The dredge licence was granted by the Environmental Protection Agency of South Australia (EPA) on the 12th of March 2019. Environmental management plans were written in close collaboration between all parties, ensuring commencement of dredging works in time.

ENVIRONMENT

Environmental protection was of utmost importance for the executing of the project. Seagrass meadows are present adjacent the access channel for which stringent turbidity limits applied and seagrass surveys were undertaken prior and post dredging works. The project was partly located in the Adelaide Dolphin Sanctuary, hosting several resident and transient dolphin species, for which marine mammal monitoring was undertaken by the dredge crew. Prior to the works, razorfish present at the seabed in the channel had to be removed to prevent the potential spread of the Pacific Oyster Mortality Syndrome to South Australia’s important oyster farming industry. Finally, the overseas and interstate dredge vessels obtained a thorough cleaning prior to arrival in South Australia to adhere to Australia’s biofouling guidelines in order to prevent the importation of invasive marine species.

STAKEHOLDERS

Stakeholder management was key to the project’s success. Flinders Ports conducted a large community engagement campaign, which resulted in no complains during the works. During the works, continuous engagement between the EPA, Boskalis and Flinders Ports occurred to remain informed.

ADAPTIVE MANAGEMENT

During the works, dredge activities had to be managed to remain within the set turbidity thresholds. This was done through The Adaptive Management System in close cooperation with the client and the Environmental Protection Agency. Real-time turbidity monitoring data and knowledge on the operations and the environment ensured effective measures could be taken. During the works however, four events occurred where the upper threshold was exceeded, exuberated by severe weather. The EPA acknowledged that poor weather conditions contributed to the high turbidity levels on occasion and allowed the dredge operation to continue without harming the environment.

TEAM-WORK

The spirit of cooperation and the open communication within in the project team, as well with the Client and relevant stakeholders was excellent. It's also worth mentioning that almost half the project team consisted of female colleagues working on board of dredgers, on hydrographic surveys, environmental issues, planning, logistics and the secretarial side.

SAFETY

To prevent incidents during mooring and unmooring, the BHD Magnor is equipped with a mooring actuator. The mooring actuator was developed to eliminate personnel risks and to optimize the dredging process. The system is a remotely constant tensioning mooring system, which eliminates the need to manually handle the mooring lines for the barges coming along side to be loaded.However no firm requirement, but as a result of increasing awareness for pollution, biodegradable hydraulic oil was used in all the hydraulic systems on the project.

HR

All vessels on the project were operated by a mix of expatriate professionals and Australian seafarers. Personnel was given project specific training to assure the best outcome for the project:

  • Mammal observation training

  • Heritage training

  • Environmental compliance training

  • Project and visitor inductions

Related projects

Selected filters
IMG_0064_header.jpg

Port development, Gothenburg

Gothenburg turns around some 34 million tons of cargo annually, including 700,000 TEU (containers), and is unique in the region. With regard to the variety and frequency of calls from intercontinental liner trade the port is outstanding in Sweden. The port can be reached from the sea via two different channels: Torshamnen Fairway and Böttö Fairway. From a navigational point of view both channels needed to be deepened and widened at a number of places. Thus there were two good reasons to enhance the fairways: securing the port’s future as the premier port for liner trade and creating safer navigation. This resulted into a major dredging contract which was awarded in June 2002 to Boskalis Westminster Dredging Company.

03_header.jpg

Remediation, Urk harbor area

Many port areas requiring dredging works have been forced to put projects on hold due to the absence of an environmentally safe solution for the disposal or processing of contaminated sediments. While this is a global problem, the availability of central, large-scale repositories in the Netherlands has transformed disposal economics at the national level. Nevertheless, the high level of debris encountered during the dredging of ports and harbors remains a major challenge to all contractors. The hydraulic transport of sediments with a high debris content is impossible.

Pusan_New_Port_5_header.jpg

Port construction, Pusan

The 4th largest container terminal in the world is located in the South East of the South Korean peninsula at Busan. As the old port is completely surrounded by the metro-city, expansion of the old port is restricted. To solve the chronic phenomenon of cargo congestion MOMAF (Ministry of Marine and Fisheries) decided in 1997 to construct a new port situated 20 km west of Busan with a final total handling capacity of 4.6 million TEU and total expenses of 4.2 billion USD.

mejillones_5_header.jpg

Port construction and environmental monitoring, Mejillones

Boskalis International B.V. was working as a subcontractor to the Chilean civil contractor Empresa Constructora BELFI SA, which was awarded the contract to construct phase 1 of the New Mega Port Mejillones. This port has been developed in order to ship the copper of the Chilean mining corporation CODELCO.

Luchtfoto_milieubrochure_header.jpg

Cleanup, Ketelmeer

Ketelmeer, a lake in the Netherlands with a length of some 10 kilometers and a width varying from two to three kilometers, separates the North Eastern and Southern Polders constructed during the late 1960s and early 1970s. It is a major example of the problem of 'historic pollution'. Lake Ketelmeer receives the waters of the Rijn and IJssel and over a period of three or more decades, tens of millions of cubic meters of highly contaminated sediments entered Ketelmeer from hundreds of upstream locations. The bottom was covered by polluted sediments to an average depth of 50 cm. A significant proportion of this material had to be removed, or capped by the cleaner sediments of recent years, if a normal aquatic environment was to be restored.

Warnow_Tunnel__3__header.jpg

Tunnel construction Warnow, Rostock

The Warnow Tunnel is located in Rostock, Germany, at the old mouth of the river Warnow in the Baltic Sea. In the DDR period this area grew out to be the main harbor of East-Germany. After the 'turn' (die Wende) in 1989 the port more or less died. Goods came cheaper and quicker from Rotterdam, Bremen and Hamburg by rail.